Minggu, 06 Desember 2009

TUGAS FISIKA RADITYA XI IPA 3

ELASTISITAS

Kita mulai dari teknologi yang sering kita gunakan, yaitu sepeda motor atau mobil. Gambar disamping ini adalah pegas yang digunakan sebagai peredam kejutan pada kendaraan sepeda motor. Istilah pegas digunakan pada sistem suspensi kendaraan bermotor. Tujuan adanya pegas ini adalah untuk meredam kejutan ketika sepeda motor yang dikendarai melewati permukaan jalan yang tidak rata. Ketika sepeda motor melewati jalan berlubang, gaya berat yang bekerja pada pengendara (dan gaya berat motor) akan menekan pegas sehingga pegas mengalami mampatan. Akibat sifat elastisitas yang dimilikinya, pegas meregang kembali setelah termapatkan. Perubahan panjang pegas ini menyebabkan pengendara merasakan ayunan. Dalam kondisi ini, pengendara merasa sangat nyaman ketika sedang mengendarai sepeda motor.
  • HUKUM HOOKE:
Gambar disamping merupakan gambar pegas. Nyamannya kehidupan kita tidak terlepas dari bantuan pegas, walaupun kadang tidak kita sadari. Ketika dirimu mengendarai sepeda motor atau berada dalam sebuah mobil yang sedang bergerak di jalan yang permukaannya tidak rata alias jalan berlubang, pegas membantu meredam kejutan sehingga dirimu merasa sangat nyaman berada dalam mobil atau ketika berada di atas sepeda motor. Apabila setiap kendaraan yang anda tumpangi tidak memiliki pegas, gurumuda yakin perjalanan anda akan sangat melelahkan, apalagi ketika menempuh perjalanan yang jauh. Ketika turun dari mobil langsung meringis kesakitan karena terserang encok dan pegal linu pegas tidak hanya dimanfaatkan di mobil atau sepeda motor, tetapi pada semua kendaraan yang selalu kita gunakan. Pegas merupakan salah satu contoh benda elastis. Contoh benda elastis lainnya adalah karet mainan

Ketika menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. Jika tarikan dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.

Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas.

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a).

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini.

panjang mula-mula (Lo) dan luas penampang (A)

Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti.

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan ( STRESS )

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan ( STRAIN )

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

MODULUS YOUNG

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

GERAK HARMONIC SEDERHANA :

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai hukum hooke dan dicetuskan oleh paman Robert Hooke. k adalah konstanta dan x adalah simpangan. Hukum Hooke akurat jika pegas tidak ditekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar. Amati bahwa besarnya gaya bergantung juga pada besar x (simpangan).

Sekarang mari kita tinjau lebih jauh apa yang terjadi jika pegas diregangkan sampai jarak x = A, kemudian dilepaskan (lihat gambar di bawah).

Setelah pegas diregangkan, pegas menarik benda kembali ke posisi setimbang (x=0). Ketika melewati posisi setimbang, benda bergerak dengan laju yang tinggi karena telah diberi percepatan oleh gaya pemulih pegas. Ketika bergerak pada posisi setimbang, gaya pegas = 0, tetapi laju benda maksimum.

Karena laju benda maksimum maka benda terus bergerak ke kiri. Gaya pemulih pegas kembali memperlambat gerakan benda sehingga laju benda perlahan-lahan menurun dan benda berhenti sejenak ketika berada pada x = -A. Pada titik ini, laju benda = 0, tetapi gaya pegas bernilai maksimum, di mana arahnya menuju ke kanan (menuju posisi setimbang).

Benda tersebut bergerak kembali ke kanan menuju titik setimbang karena ditarik oleh gaya pemulih pegas tadi. Gerakan benda ke kanan dan ke kiri berulang secara periodik dan simetris antara x = A dan x = -A.

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama dengan ayunan sederhana, yakni terdapat periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut simpangan. Simpangan maksimum alias jarak terbesar dari titik setimbang disebut amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas adalah gerak bolak balik lengkap dari titik awal dan kembali ke titik yang sama. Misalnya jika benda diregangkan ke kanan, maka benda bergerak mulai dari titik x = 0, menuju titik x = A, kembali lagi ke titik x = 0, lalu bergerak menuju titik x = -A dan kembali ke titik x = 0 (bingung yach ?). Dipahami perlahan-lahan ya…

Bagaimana osilasi/getaran pada pegas yang digantungkan secara vertikal ?

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar di bawah ya).

Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks), sehingga benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Dalam kenyataannya, pada suatu saat tertentu pegas tersebut berhenti bergerak karena adanya gaya gesekan udara.

Semua benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), maka benda tersebut dikatakan melakukan gerak harmonik sederhana (GHS) alias Osilator Harmonik Sederhana (OHS).

Contoh soal 1 :

Sebuah benda digantungkan pada sebuah tali yang digantung vertikal. Benda tersebut ditarik ke samping dan dilepaskan sehingga benda bergerak bolak balik di antara dua titik terpisah sejauh 20 cm. Setelah 20 detik dilepaskan, benda melakukan getaran sebanyak 40 kali. Hitunglah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Benda melakukan getaran sebanyak 40 kali selama 20 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (40 / 20).

b) Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Karena benda bergerak bolak balik alias melakukan getaran di antara dua titik terpisah sejauh 20 cm, maka amplitudo getaran benda adalah setengah dari lintasan yang dilalui benda tersebut. Dengan demikian, amplitudo = ½ (20 cm) = 10 cm

Contoh soal 2 :

Sebuah benda digantungkan pada sebuah pegas dan berada pada titik kesetimbangan. Benda tersebut ditarik ke bawah sejauh 5 cm dan dilepaskan. Jika benda melalui titik terendah sebanyak 10 kali selama 5 detik, tentukanlah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi

Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Pada soal dikatakan bahwa benda tersebut melewati titik terendah sebanyak 10 kali selama 5 detik. Agar benda bisa melewati titik terendah maka benda tersebut pasti melakukan getaran (gerakan bolak balik dari titik terendah menuju titik tertinggi dan kembali lagi ke titik terendah). Karena benda melewati titik terendah sebanyak 10 kali selama 5 detik maka dapat dikatakan bahwa benda melakukan getaran sebanyak 10 kali selama 5 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (10 / 5).

b) Periode

Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Pada soal di atas, amplitudo getaran benda adalah 5 cm

Contoh soal 3 :

Sebuah sedan bermassa 1200 kg ditumpangi 3 orang yang memiliki massa total 200 kg. Pegas mobil tersebut tertekan sejauh 5 cm. Anggap saja percepatan gravitasi = 10 m/s2

Hitunglah :

a) konstanta pegas mobil tersebut

b) berapa jauh pegas sedan tersebut tertekan jika sedan dinaiki 4 orang dan bagasinya dipenuhi dengan muatan sehingga total massa adalah 300 kg ?

Panduan jawaban :

Pegas sedan mulai tertekan ketika dimuati beban bermassa 200 kg. Dengan demikian massa sedan tidak disertakan dalam perhitungan, karena ketika sedan tidak dimuati beban, pegas sedan berada pada posisi setimbang.

a) konstanta pegas

b) apabila sedan dimuati beban bermassa 300 kg.

USAHA DAN ENERGI

Dalam kehidupan sehari-hari pasti sering mendengar atau menggunakan kata “usaha” dan “energi”. Kata “usaha” yang sering kita gunakan dalam kehidupan sehari-hari memiliki makna yang berbeda dengan pengertian usaha dalam fisika. Usaha dan Energi merupakan besaran skalar

USAHA

Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.

usaha dan kerja-02

Persamaan matematisnya adalah :

W = Fs cos 0 = Fs (1) = Fs

W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.

Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta

usaha dan kerja-01

Secara matematis dirumuskan sebagai berikut :

usaha dan energi

Hasil perkalian antara besar gaya (F) dan besar perpindahan (s) di atas merupakan bentuk perkalian titik atau perkalian skalar. Karenanya usaha masuk dalam kategori besaran skalar. Persamaan di atas bisa ditulis dalam bentuk seperti ini :

usaha dan kerja

Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.

Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol. Contoh lain adalah ketika dirimu mendorong tembok, anda tidak melakukan usaha. Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.

Contoh Soal 1 :

Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap karung berisi beras tersebut…

usaha dan energi - 466

Panduan jawaban :

Sebelum menghitung usaha total, terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan bertanda positif sedangkan arah kiri negatif. (b = buruh, Fg = gaya gesekan, N = gaya normal, w = berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.

Pada soal di atas, terdapat empat gaya yang bekerja pada peti kemas, yakni gaya tarik buruh (searah dengan perpindahan peti kemas), gaya gesekan (berlawanan arah dengan perpindahan peti), gaya berat dan gaya normal (tegak lurus arah perpindahan, sudut yang terbentuk adalah 90o).

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.

Usaha yang dilakukan oleh buruh pelabuhan :

Wb = Fb.s = (100 N) (2 m) = 200 N.m

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s =- (50 N) (2 m) = -100 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0

Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule

Contoh Soal 2 :

Seorang anak menarik mobil mainan menggunakan tali dengan gaya sebesar 20 N. Tali tersebut membentuk sudut 30o terhadap permukaan tanah dan besar gaya gesekan tanah dengan roda mobil mainan adalah 2 N. Jika mobil mainan berpindah sejauh 10 meter, berapakah usaha yang dilakukan anak tersebut ?

usaha dan kerja-03

Panduan jawaban :

Pada dasarnya soal ini sama dengan contoh soal 1. Pada soal ini terdapat sudut yang dibentuk antara gaya dengan arah horisontal, sehingga komponen gaya tarik yang dipakai adalah F cos teta (sejajar dengan arah perpindahan)

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya : (A = anak, g = gesekan, w = berat dan N = normal)

usaha dan kerja-04

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s = (-2 N) (10 m) = -20 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0

Usaha total :

ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain.

Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan).

HUKUM KEKEKALAN ENERGI MEKANIK

Hukum Kekekalan Energi Mekanik pada Gerak Jatuh Bebas

Suatu contoh sederhana dari Hukum Kekekalan Energi Mekanik adalah ketika sebuah benda melakukan Gerak Jatuh Bebas .

Misalnya kita tinjau sebuah batu yang dijatuhkan dari ketinggian tertentu. Pada analisis mengenai Gerak Jatuh Bebas, hambatan udara diabaikan, sehingga pada batu hanya bekerja gaya berat (gaya berat merupakan gaya gravitasi yang bekerja pada benda, di mana arahnya selalu tegak lurus menuju permukaan bumi).

Ketika batu berada pada ketinggian tertentu dari permukaan tanah dan batu masih dalam keadaan diam, batu tersebut memiliki Energi Potensial sebesar EP = mgh. m adalah massa batu, g adalah percepatan gravitasi dan h adalah kedudukan batu dari permukaan tanah (kita gunakan tanah sebagai titik acuan). ketika berada di atas permukaan tanah sejauh h (h = high = tinggi), Energi Kinetik (EK) batu = 0. mengapa nol ? batu masih dalam keadaan diam, sehingga kecepatannya 0. EK = ½ mv2, karena v = 0 maka EK juga bernilai nol alias tidak ada Energi Kinetik. Total Energi Mekanik = Energi Potensial.

EM = EP + EK

EM = EP + 0

EM = EP

Apabila batu kita lepaskan, batu akan jatuh ke bawah akibat gaya tarik gravitasi yang bekerja pada batu tersebut. Semakin ke bawah, EP batu semakin berkurang karena kedudukan batu semakin dekat dengan permukaan tanah (h makin kecil). Ketika batu bergerak ke bawah, Energi Kinetik batu bertambah. Ketika bergerak, batu mempunyai kecepatan. Karena besar percepatan gravitasi tetap (g = 9,8 m/s2), kecepatan batu bertambah secara teratur. Makin lama makin cepat. Akibatnya Energi Kinetik batu juga semakin besar. Energi Potensial batu semakin kecil karena semakin ke bawah ketinggian batu makin berkurang. Jadi, sejak batu dijatuhkan, EP batu berkurang dan EK batu bertambah. Jumlah total Energi Mekanik (Energi Kinetik + Energi Potensial = Energi Mekanik) bernilai tetap / tidak berubah. Yang terjadi hanya perubahan Energi Potensial menjadi Energi Kinetik.

Ketika batu mencapai setengah dari jarak tempuh total, besar EP = EK. Jadi pada posisi ini, setengah dari Energi Mekanik = EP dan setengah dari Energi Mekanik = EK. Ketika batu menyentuh tanah, batu, pasir dan debu dengan kecepatan tertentu, EP batu lenyap tak berbekas karena h = 0, sedangkan EK bernilai maksimum.

Hukum Kekekalan Energi Mekanik pada Gerak parabola

Hukum kekekalan energi mekanik juga berlaku ketika benda melakukan gerakan parabola.

Ketika benda hendak bergerak (benda masih diam), Energi Mekanik yang dimiliki benda sama dengan nol. Ketika diberikan kecepatan awal sehingga benda melakukan gerakan parabola, EK bernilai maksimum (kecepatan benda besar) sedangakn EP bernilai minimum (jarak vertikal alias h kecil). Semakin ke atas, kecepatan benda makin berkurang sehingga EK makin kecil, tetapi EP makin besar karena kedudukan benda makin tinggi dari permukaan tanah. Ketika mencapai titik tertinggi, EP bernilai maksimum (h maksimum), sedangkan EK bernilai minimum (hanya ada komponen kecepatan pada arah vertikal).Ketika kembali ke permukaan tanah, EP makin berkurang sedangkan EK makin besar dan EK bernilai maksimum ketika benda menyentuh tanah. Jumlah energi mekanik selama benda bergerak bernilai tetap, hanya selama gerakan terjadi perubahan energi kinetik menjadi energi potensial (ketika benda bergerak ke atas) dan sebaliknya ketika benda bergerak ke bawah terjadi perubahan energi potensial menjadi energi kinetik.

Hukum Kekekalan Energi Mekanik pada Gerak Harmonik Sederhana

Terdapat dua jenis gerakan yang merupakan Gerak Harmonik Sederhana, yakni ayunan sederhana dan getaran pegas.

Hukum Kekekalan Energi Mekanik pada ayunan sederhana.

Untuk menggerakan benda yang diikatkan pada ujung tali, benda tersebut kita tarik ke kanan hingga mencapai titik A. Ketika benda belum dilepaskan (benda masih diam), Energi Potensial benda bernilai maksimum, sedangkan EK = 0 (EK = 0 karena benda diam ). Pada posisi ini, EM = EP. Ingat bahwa pada benda bekerja gaya berat w = mg. Karena benda diikatkan pada tali, maka ketika benda dilepaskan, gaya gravitasi sebesar w = mg cos teta menggerakan benda menuju posisi setimbang (titik B). Ketika benda bergerak dari titik A, EP menjadi berkurang karena h makin kecil. Sebaliknya EK benda bertambah karena benda telah bergerak. Pada saat benda mencapai posisi B, kecepatan benda bernilai maksimum, sehingga pada titik B Energi Kinetik menjadi bernilai maksimum sedangkan EP bernilai minimum. Karena pada titik B kecepatan benda maksimum, maka benda bergerak terus ke titik C. Semakin mendekati titik C, kecepatan benda makin berkurang sedangkan h makin besar. Kecepatan berkurang akibat adanya gaya berat benda sebesar w = mg cos teta yang menarik benda kembali ke posisi setimbangnya di titik B. Ketika tepat berada di titik C, benda berhenti sesaat sehingga v = 0. karena v = 0 maka EK = 0. pada posisi ini, EP bernilai maksimum karena h bernilai maksimum. EM pada titik C = EP. Akibat tarika gaya berat sebesar w = mg cos teta, maka benda bergerak kembali menuju titik B. Semakin mendekati titik B, kecepatan gerak benda makin besar, karenanya EK semakin bertambah dan bernilai maksimum pada saat benda tepat berada pada titik B. Semikian seterusnya, selalu terjadi perubahan antara EK dan EP. Total Energi Mekanik bernilai tetap (EM =EP + EK).

Hukum Kekekalan Energi Mekanik pada Getaran Pegas

Getaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal. Sebelum membahas satu persatu, perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan, seperti EK. Persamaan EK tersebut bersifat umum untuk semua jenis gerakan, sedangkan Energi potensial tidak. Persamaan EP = mgh merupakan persamaan EP gravitasi, sedangkan EP elastis , persamaan EP-nya adalah :


Pegas yang diletakan horisontal

Misalnya kita letakan sebuah pegas di atas permukaan meja percobaan. Salah satu ujung pegas telah diikat pada dinding, sehingga pegas tidak bergeser ketika digerakan. Anggap saja permukaan meja sangat licin dan pegas yang kita gunakan adalah pegas ideal sehingga memenuhi hukum Hooke. Sekarang kita kaitkan sebuah benda pada salah satu ujung pegas.

Jika benda kita tarik ke kanan sehingga pegas teregang sejauh x, maka pada benda bekerja gaya pemulih pegas, yang arahnya berlawanan dengan arah tarikan kita. Ketika benda berada pada simpangan x, EP benda maksimum sedangkan EK benda nol (benda masih diam).

Ketika benda kita lepaskan, gaya pemulih pegas menggerakan benda ke kiri, kembali ke posisi setimbangnya. EP benda menjadi berkurang dan menjadi nol ketika benda berada pada posisi setimbangnya. Selama bergerak menuju posisi setimbang, EP berubah menjadi EK. Ketika benda kembali ke posisi setimbangnya, gaya pemulih pegas bernilai nol tetapi pada titik ini kecepatan benda maksimum. Karena kecepatannya maksimum, maka ketika berada pada posisi setimbang, EK bernilai maksimum.

Benda masih terus bergerak ke kiri karena ketika berada pada posisi setimbang, kecepatan benda maksimum. Ketika bergerak ke kiri, Gaya pemulih pegas menarik benda kembali ke posisi setimbang, sehingga benda berhenti sesaat pada simpangan sejauh -x dan bergerak kembali menuju posisi setimbang. Ketika benda berada pada simpangan sejauh -x, EK benda = 0 karena kecepatan benda = 0. pada posisi ini EP bernilai maksimum.

Pada penjelasan di atas, tampak bahwa ketika bergerak dari posisi setimbang menuju ke kiri sejauh x = -A (A = amplitudo / simpangan terjauh), kecepatan benda menjadi berkurang dan bernilai nol ketika benda tepat berada pada x = -A. Karena kecepatan benda berkurang, maka EK benda juga berkurang dan bernilai nol ketika benda berada pada x = -A. Karena adanya gaya pemulih pegas yang menarik benda kembali ke kanan (menuju posisi setimbang), benda memperoleh kecepatan dan Energi Kinetiknya lagi. EK benda bernilai maksimum ketika benda tepat berada pada x = 0, karena laju gerak benda pada posisi tersebut bernilai maksimum. Proses perubahan energi antara EK dan EP berlangsung terus menerus selama benda bergerak bolak balik. Total EP dan EK selama benda bergetar besarnya tetap alias kekal bin konstan.

Pegas yang diletakan vertikal

Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal).

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol.


Menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Anda dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam /tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Ketika benda kita diamkan sesaat (belum dilepaskan), EP benda bernilai maksimum sedangkan EK = 0. EP maksimum karena benda berada pada simpangan sejauh x. EK = 0 karena benda masih diam.

Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. ( lihat gambar c di bawah ini).

Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks). Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang (x = 0).

Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Pada benda berada pada titik kesetimbangan (x = 0), EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP.

Hukum Kekekalan Energi Mekanik pada Bidang Miring

Misalnya sebuah benda diletakan pada bidang miring sebagaimana tampak pada gambar di atas. pada analisis ini kita menganggap permukaan bidang miring sangat licin sehingga tidak ada gaya gesek yang menghambat gerakan benda. Kita juga mengabaikan hambatan udara. Ini adalah model ideal.

Apabila benda kita letakan pada bagian paling atas bidang miring, ketika benda belum dilepaskan, benda tersebut memiliki EP maksimum. Pada titik itu EK-nya = 0 karena benda masih diam. Total Energi Mekanik benda = Energi Potensial (EM = EP).

Perhatikan bahwa pada benda tersebut bekerja gaya berat yang besarnya adalah m.g cos teta. Ketika benda kita lepaskan, maka benda pasti meluncur ke bawah akibat tarikan gaya berat. Ketika benda mulai bergerak meninggalkan posisi awalnya dan bergerak menuju ke bawah, EP mulai berkurang dan EK mulai bertambah. EK bertambah karena gerakan benda makin cepat akibat adanya percepatan gravitasi yang nilainya tetap yakni g cos teta. Ketika benda tiba pada separuh lintasannya, jumlah EP telah berkurang menjadi separuh, sedangkan EK bertambah setengahnya. Total Energi Mekanik = ½ EP + ½ EK.

Semakin ke bawah, jumlah EP makin berkurang sedangkan jumlah EK semakin meningkat. Ketika tiba pada akhir lintasan (kedudukan akhir di mana h2 = 0), semua EP berubah menjadi EK. Dengan kata lain, pada posisi akhir lintasan benda, EP = 0 dan EK bernilai maksimum. Total Energi Mekanik = Energi Kinetik.

Hukum Kekekalan Energi Mekanik pada Bidang Lengkung

Ketika benda berada pada bagian A dan benda masih dalam keadaan diam, Energi Potensial benda maksimum, karena benda berada pada ketinggian maksimum (hmaks). Pada benda tersebut bekerja gaya berat yang menariknya ke bawah. Ketika dilepaskan, benda akan meleuncur ke bawah. Ketika mulai bergerak ke bawah, h semakin kecil sehingga EP benda makin berkurang. Semakin ke bawah, kecepatan benda semakin makin besar sehingga EK bertambah. Ketika berada pada posisi B, kecepatan benda mencapai nilai maksimum, sehingga EK benda bernilai maksimum. Sebaliknya, EP = 0 karena h = 0. Karena kecepatan benda maksimum pada posisi ini, benda masih terus bergerak ke atas menuju titik C. Semakin ke atas, EK benda semakin berkurang sedangkan EP benda semakin bertambah. Ketika berada pada titik C, EP benda kembali seperti semula (EP bernilai maksimum) dan posisi benda berhenti bergerak sehingga EK = 0. Jumlah Energi Mekanik tetap sama sepanjang lintasan.

Hukum Kekekalan Energi Mekanik pada Bidang Lingkaran

Salah satu contoh aplikasi Hukum Kekekalan Energi Mekanik pada gerak melingkar adalah gerakan Roller Coaster pada lintasan lingkaran vertikal sebagaimana tampak pada gambar di atas. Kita menganggap bahwa Roler coaster bergerak hanya dengan bantuan gaya gravitasi, sehingga agar bisa bergerak pada lintasan lingkaran vertikal, roler coaster harus digiring sampai ketinggian h1. Kita mengunakan model ideal, di mana gaya gesekan, baik gesekan udara maupun gesekan pada permukaan lintasan diabaikan. Pada ketinggian titik A, Roller coaster memiliki EP maksimum sedangkan EK-nya nol, karena roller coaster belum bergerak. Ketika tiba di titik B, Roller coaster memiliki laju maksimum, sehingga pada posisi ini EK-nya bernilai maksimum. Karena pada titik B laju Roller coaster maksimum maka ia terus bergerak ke titik C. Benda tidak berhenti pada titik C tetapi sedang bergerak dengan laju tertentu, sehingga pada titik ini Roller coaster masih memiliki sebagian EK. Sebagian Energi Kinetik telah berubah menjadi Energi Potensial karena roller coaster berada pada ketinggian maksimum dari lintasan lingkaran. Roller coaster terus bergerak kembali ke titik C. Pada titik C, semua Energi Kinetik Roller coaster kembali bernilai maksimum, sedangkan EP-nya bernilai nol. Energi Mekanik bernilai tetap sepanjang lintasan. Karena kita menganggap bahwa tidak ada gaya gesekan, maka Roller coaster akan terus bergerak lagi ke titik C dan seterusnya.

Hukum Kekekalan Energi Mekanik pada Gerak Satelit

Energi Potensial tidak mempunyai persamaan umum untuk semua jenis gerakan. Persamaan EK dapat digunakan untuk semua jenis gerakan, sedangkan EP tidak. Pada pembahasan di atas, anda dapat melihat perbedaan antara persamaan EP Gravitasi dan EP elastis. Energi Potensial sebuah benda yang berada pada jarak yang jauh dari permukaan bumi (tidak di dekat permukaan bumi) juga memiliki persamaan yang berbeda. EP suatu benda yang berada pada jarak yang jauh dari permukaan bumi dinyatakan dengan persamaan :

RE = jari-jari bumi dan r adalah jarak benda dari permukaan bumi. untuk gerakan satelit, r adalah jari-jari orbit satelit. Ketika berada di dekat permukaan bumi, R dan r hampir sama dengan dan Energi Potensial hampir sama dengan mgh. Ketika benda berada jauh dari bumi, seperti satelit misalnya, maka EP-nya adalah mgh kali RE/r.

Kita tahu bahwa jari-jari orbit satelit selalu tetap jika diukur dari permukaan bumi. Satelit memiliki EP karena ia berada pada pada jarak r dari permukaan bumi. EP bernilai tetap selama satelit mengorbit bumi, karena jari-jari orbitnya tetap. Bagaimana dengan EK satelit, kita tahu bahwa satelit biasanya mengorbit bumi secara periodik. Jadi laju tangensialnya selalu sama sepanjang lintasan. Dengan demikian, Energi Kinetik satelit juga besarnya tetap sepanjang lintasan. Jadi selama mengorbit bumi, EP dan EK satelit selalu tetap /tidak berubah sepanjang lintasan. Energi total satelit yang mengorbit bumi adalah jumlah energi potensial dan energi kinetiknya. Sepanjang orbitnya, besar Energi Mekanik satelit selalu tetap.

  • HUBUNGAN USAHA DENGAN PERUBAHAN ENERGI POTENSIAL DAN KINETIK :

ENERGI POTENSIAL

Energi potensial merupakan energi yang dihubungkan dengan gaya-gaya yang bergantung pada posisi atau wujud benda dan lingkungannya. Banyak sekali contoh energi potensial dalam kehidupan kita. Karet ketapel yang kita regangkan memiliki energi potensial. Karet ketapel dapat melontarkan batu karena adanya energi potensial pada karet yang diregangkan. Demikian juga busur yang ditarik oleh pemanah dapat menggerakan anak panah, karena terdapat energi potensial pada busur yang diregangkan. Contoh lain adaah pegas yang ditekan atau diregangkan. Energi potensial pada tiga contoh ini disebut senergi potensial elastik. Energi kimia pada makanan yang kita makan atau energi kimia pada bahan bakar juga termasuk energi potensial. Ketika makanan di makan atau bahan bakar mengalami pembakaran, baru energi kimia yang terdapat pada makanan atau bahan bakar tersebut dapat dimanfaatkan. Energi magnet juga termasuk energi potensial. Ketika kita memegang sesuatu yang terbuat dari besi di dekat magnet, pada benda tersebut sebenarnya bekerja energi potensial magnet. Ketika kita melepaskan benda yang kita pegang (paku, misalnya), dalam waktu singkat paku tersebut bergerak menuju magnet dan menempel pada magnet. Perlu dipahami bahwa paku memiliki energi potensial magnet ketika berada jarak tertentu dari magnet; ketika menempel pada magnet, energi potensial bernilai nol.

Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahaman, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni m.g (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = m.g) dengan ketinggian h. Arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas FA = gaya angkat

W = FA . s = (m)(-g) (s) = – mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah.

Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 – h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.

Jika kita gabungkan persamaan 1 dengan persamaan 2 :

Persamaan ini menyatakan bahwa usaha yang dilakukan oleh gaya yang menggerakan benda dari h1 ke h2 (tanpa percepatan) sama dengan perubahan energi potensial benda antara h1 dan h2. Setiap bentuk energi potensial memiliki hubungan dengan suatu gaya tertentu dan dapat dinyatakan sama dengan EP gravitasi. Secara umum, perubahan EP yang memiliki hubungan dengan suatu gaya tertentu, sama dengan usaha yang dilakukan gaya jika benda dipindahkan dari kedudukan pertama ke kedudukan kedua. Dalam makna yang lebih sempit, bisa dinyatakan bahwa perubahan EP merupakan usaha yang diperlukan oleh suatu gaya luar untuk memindahkan benda antara dua titik, tanpa percepatan.

Contoh soal 1 :

Buah mangga yang ranum dan mengundang selera menggelayut pada tangkai pohon mangga yang berjarak 10 meter dari permukaan tanah. Jika massa buah mangga tersebut 0,2 kg, berapakah energi potensialnya ? anggap saja percepatan gravitasi 10 m/s2.

jawab :

EP = m.g.h

EP = (0,2 kg) (10 m/s2) (10 m)

EP = 20 Kg m2/s2 = 20 N.m = 20 Joule

Contoh soal 2 :

Seekor monyet bermassa 5 kg berayun dari satu dahan ke dahan lain yang lebih tinggi 2 meter. Berapakah perubahan energi potensial monyet tersebut ? g = 10 m/s2

jawab :

Soal ini sangat gampang… kita tetapkan dahan pertama sebagai titik acuan, di mana h = 0. Kita hanya perlu menghitung EP monyet ketika berada pada dahan kedua…

EP = m.g.h = (5 kg). (10 m/s2).(2 m)

EP = 100 Joule

Dengan demikian, perubahan energi potensial monyet = 100 Joule.

Contoh soal 3 :

Seorang buruh pelabuhan yang tingginya 1,50 meter mengangkat sekarung beras yang bermassa 50 kg dari permukaan tanah dan memberikan kepada seorang temannya yang berdiri di atas kapal. Jika orang tersebut tersebut berada 0,5 meter tepat di atas kepala buruh pelabuhan, hitunglah energi potensial karung berisi beras relatif terhadap :

a) permukaan tanah

b) kepala buruh pelabuhan

jawab:

a). EP karung berisi beras relatif terhadap permukaan tanah

Ketinggian total karung beras dari permukaan tanah = 1,5 m + 0,5 m = 2 meter

Dengan demikian,

EP = m.g.h = (50 kg) .(10 m/s2) .(2 m)

EP = 1000 Joule

b). EP karung berisi beras relatif terhadap kepala buruh pelabuhan

Kedudukan karung beras diukur dari kepala buruh pelabuhan adalah 0,5 meter.

EP = m.g.h = (50 kg). (10 m/s2). (0,5 m)

EP = 250 Joule

Energi Potensial Elastis

Sebagaimana dijelaskan pada bagian awal tulisan ini, selain energi potensial gravitasi terdapat juga energi potensial elastis. EP elestis berhubungan dengan benda-benda yang elastis, misalnya pegas. Mari kita bayangkan sebuah pegas yang ditekan dengan tangan. Apabila kita melepaskan tekanan pada pegas, maka pegas tersebut melakukan usaha pada tangan kita. Efek yang dirasakan adalah tangan kita terasa seperti di dorong. Apabila kita menempelkan sebuah benda pada ujung pegas, kemudian pegas tersebut kita tekan, maka setelah dilepaskan benda yang berada di ujung pegas pasti terlempar. perhatikan gambar di bawah.

Ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan gambar a (lihat gambar di bawah). Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x, yakni :

FT = kx

k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih adalah :

FP = -kx

Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Ini adalah persamaan hukum Hooke. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar).

Untuk menghitung Energi Potensial pegas yang ditekan atau diregangkan, terlebih dahulu kita hitung gaya usaha yang diperlukan untuk menekan atau meregangkan pegas. Kita tidak bisa menggunakan persamaan W = F s = F x, karena gaya tekan atau gaya regang yang kita berikan pada pegas selalu berubah-ubah selama pegas ditekan. Ketika menekan pegas misalnya, semakin besar x, gaya tekan kita juga semakin besar. Beda dengan gaya angkat yang besarnya tetap ketika kita mengangkat batu. cara mengkalikannya, Kita menggunakan gaya rata-rata. Gaya tekan atau gaya regang selalu berubah, dari F = 0 ketika x = 0 sampai F = kx (ketika pegas tertekan atau teregang sejauh x). Besar gaya rata-rata adalah :

x merupakan jarak total pegas yang teregang atau pegas yang tertekan (bandingkan dengan gambar di atas).

Usaha yang dilakukan adalah :

persamaan Energi Potensial elastis (EP Pegas).

Catatan :

Tidak ada rumus umum untuk Energi Potensial. Berbeda dengan energi kinetik yang memiliki satu rumus umum, EK = ½ mv2, bentuk persamaan EP bergantung gaya yang melakukan usaha.

Energi Kinetik

Setiap benda yang bergerak memiliki energi. Ketapel yang ditarik lalu dilepaskan sehingga batu yang berada di dalam ketapel meluncur dengan kecepatan tertentu. Batu yang bergerak tersebut memiliki energi. Kendaraan beroda yang bergerak dengan laju tertentu di jalan raya juga memiliki energi kinetik. Ketika dua buah kendaraan yang sedang bergerak saling bertabrakan, Kerusakan akibat tabrakan terjadi karena kedua mobil yang pada mulanya bergerak melakukan usaha / kerja satu terhadap lainnya. Ketika tukang bangunan memukul paku menggunakan martil, martil yang digerakan tukang bangunan melakukan kerja pada paku.

Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Energi pada benda yang bergerak disebut energi kinetik. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya “gerak”. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya.

turunaan persamaan Energi Kinetik:

Untuk menurunkan persamaan energi kinetik, sebuah benda bermassa m sedang bergerak pada lintasan lurus dengan laju awal vo.

Agar benda dipercepat beraturan sampai bergerak dengan laju v maka pada benda tersebut harus diberikan gaya total yang konstan dan searah dengan arah gerak benda sejauh s. Untuk itu dilakukan usaha alias kerja pada benda tersebut sebesar W = F s. Besar gaya F = m a.

Karena benda memiliki laju awal vo, laju akhir vt dan bergerak sejauh s, maka untuk menghitung nilai percepatan a, kita menggunakan persamaan vt2 = vo2 + 2as.

Kita subtitusikan nilai percepatan a ke dalam persamaan gaya F = m.a, untuk menentukan besar usaha :

Persamaan ini menjelaskan usaha total yang dikerjakan pada benda. Karena W = EK maka kita dapat menyimpulkan bahwa besar energi kinetik translasi pada benda tersebut adalah :

W = EK = ½ mv2 —– persamaan 2

Persamaan 1 di atas dapat kita tulis kembali menjadi :

Persamaan 3 menyatakan bahwa usaha total yang bekerja pada sebuah benda sama dengan perubahan energi kinetiknya. Pernyataan ini merupakan prinsip usaha-energi. Prinsip usaha-energi berlaku jika W adalah usaha total yang dilakukan oleh setiap gaya yang bekerja pada benda. Jika usaha positif (W) bekerja pada suatu benda, maka energi kinetiknya bertambah sesuai dengan besar usaha positif tersebut (W). Jika usaha (W) yang dilakukan pada benda bernilai negatif, maka energi kinetik benda tersebut berkurang sebesar W. Dapat dikatakan bahwa gaya total yang diberikan pada benda di mana arahnya berlawanan dengan arah gerak benda, maka gaya total tersebut mengurangi laju dan energi kinetik benda. Jika besar usaha total yang dilakukan pada benda adalah nol, maka besar energi kinetik benda tetap (laju benda konstan).

Contoh soal 1 :

Sebuah bola sepak bermassa 150 gram ditendang oleh Ronaldo dan bola tersebut bergerak lurus menuju gawang dengan laju 30 m/s. Hitunglah :

a) energi kinetik bola tersebut

b) berapa usaha yang dilakukan Ronaldo pada bola untuk mencapai laju ini, jika bola mulai bergerak dari keadaan diam ?

jawab:

a) Energi Kinetik bola

EK= ½ .m.v2 = ½ .(0,15 kg). (30 m/s2)2 = 67,5 Joule

b) Usaha total

W = EK2 – EK1

EK2 = 67,5 Joule

EK1 = ½. m.v2 = ½. m. (0) = 0 — laju awal bola (vo) = 0

Dengan demikian, usaha total :

W = 67,5 Joule – 0 = 67,5 Joule

Contoh soal 2 :

Berapa usaha yang diperlukan untuk mempercepat gerak sepeda motor bermassa 200 kg dari 5 m/s sampai 20 m/s ?

jawab :

Pertanyaan soal di atas adalah berapa usaha total yang diperlukan untuk mempercepat gerak motor.

W = EK2 – EK1

Sekarang kita hitung terlebih dahulu EK1 dan EK2

EK1 = ½. m.v12 = ½ .(200 kg). (5 m/s)2 = 2500 J

EK2 = ½ .m.v22 = ½ .(200 kg). (20 m/s)2 = 40.000 J

Energi total :

W = 40.000 J – 2.500 J

W = 37.500 J

MOMENTUM, IMPULS, DAN TUMBUKAN

Dalam ilmu fisika terdapat dua jenis momentum yakni momentum linear dan momentum sudut. Kadang-kadang momentum linear disingkat momentum. Seperti pada gerak lurus, kita seringkali hanya menyebut kecepatan linear dengan “kecepatan”. Tetapi yang kita maksudkan sebenarnya adalah “kecepatan linear”. Momentum linear merupakan momentum yang dimiliki benda-benda yang bergerak pada lintasan lurus, sedangkan momentum sudut dimiliki benda-benda yang bergerak pada lintasan melingkar.momentum suatu benda didefinisikan sebagai hasil kali massa benda dengan kecepatan gerak benda tersebut. Secara matematis ditulis :

p = mv

p adalah lambang momentum, m adalah massa benda dan v adalah kecepatan benda. Momentum merupakan besaran vektor, jadi selain mempunyai besar /nilai, momentum juga mempunyai arah. Besar momentum p = m.v. Arah momentum sama dengan arah kecepatan. Misalnya sebuah mobil bergerak ke timur, maka arah momentum adalah timur, tapi kalau mobilnya bergerak ke selatan maka arah momentum adalah selatan. karena p = mv, di mana satuan m = kg dan satuan v = m/s, maka satuan momentum adalah kg m/s.

Dari persamaan di atas, tampak bahwa momentum (p) berbanding lurus dengan massa (m) dan kecepatan (v). Semakin besar kecepatan benda, maka semakin besar juga momentum sebuah benda. Demikian juga, semakin besar massa sebuah benda, maka momentum benda tersebut juga bertambah besar. momentum adalah hasil kali antara massa dan kecepatan. Jadi walaupun seorang berbadan gendut, momentum orang tersebut = 0 apabila dia diam / tidak bergerak. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda tersebut. kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja.

Contohnya , mobil RADIT dan mobil BU METY. Apabila kedua mobil ini bermassa sama tetapi mobil RADIT bergerak lebih kencang (v lebih besar) daripada mobil BU METY, maka momentum mobil RADIT lebih besar dibandingkan dengan momentum mobil BU METY.

Hubungan Momentum dan tumbukan

Sekarang coba anda bandingkan, bagaimana akibat yang ditimbulkan dari tabrakan antara dua sepeda motor dan tabrakan antara sepeda motor dengan mobil ? anggap saja kendaraan tersebut bergerak dengan laju sama. Tentu saja tabrakan antara sepeda motor dan mobil lebih fatal akibatnya dibandingkan dengan tabrakan antara dua sepeda motor. Massa mobil jauh lebih besar dari massa sepeda motor, sehingga ketika mobil bergerak, momentum mobil tersebut lebih besar dibandingkan dengan momentum sepeda motor. Ketika mobil dan sepeda motor bertabrakan alias bertumbukan, maka pasti sepeda motor yang terpental. Bisa anda bayangkan, apa yang terjadi jika mobil bergerak sangat kencang (v sangat besar) ?

Kita bisa mengatakan bahwa makin besar momentum yang dimiliki oleh sebuah benda, semakin besar efek yang timbulkan ketika benda tersebut bertumbukkan. Kalo anda kurus, coba aja bertabrakan dengan teman anda yang gendut.

Sebelum kita melihat hubungan antara momentum dan impuls, terlebih dahulu kita pahami hukum II Newton dalam bentuk momentum.

Hukum II Newton

Pada pokok bahasan Hukum II Newton, kita telah mengetahui bahwa jika ada gaya total yang bekerja pada benda maka benda tersebut akan mengalami percepatan, di mana arah percepatan benda sama dengan arah gaya total. Apa hubungan antara hukum II Newton dengan momentum ? yang benar, bukan hubungan antara Hukum II Newton dengan momentum tetapi hubungan antara gaya total dengan momentum.

Misalnya ketika sebuah mobil bergerak di jalan dengan kecepatan tertentu, mobil tersebut memiliki momentum. Untuk mengurangi kecepatan mobil pasti dibutuhkan gaya (dalam hal ini gaya gesekan antara kampas dan ban ketika mobil direm). Ketika kecepatan mobil berkurang (v makin kecil), momentum mobil juga berkurang. Demikian juga sebaliknya, sebuah mobil yang sedang diam akan bergerak jika ada gaya total yang bekerja pada mobil tersebut (dalam hal ini gaya dorong yang dihasilkan oleh mesin). Ketika mobil masih diam, momentum mobil = 0. pada saat mobil mulai bergerak dengan kecepatan tertentu, mobil tersebut memiliki momentum. Jadi kita bisa mengatakan bahwa perubahan momentum mobil disebabkan oleh gaya total. Dengan kata lain, laju perubahan momentum suatu benda sama dengan gaya total yang bekerja pada benda tersebut. Ini adalah hukum II Newton dalam bentuk momentum. Newton pada mulanya menyatakan hukum II newton dalam bentuk momentum. Hanya Newton menyebut hasil kali m.v sebagai “kuantitas gerak”, bukan momentum.

Secara matematis, versi momentum dari Hukum II Newton dapat dinyatakan dengan persamaan :

Catatan = lambang momentum adalah p kecil,

Dari persamaan ini, kita dapat menurunkan persamaan Hukum II Newton.

Sekarang kita tulis kembali persamaan di atas :

Apa bedanya penggunaan hukum II Newton “yang sebenarnya” dengan hukum II Newton versi momentum ? Hukum II Newton versi momentum di atas lebih bersifat umum, sedangkan Hukum II Newton “yang sebenarnya” hanya bisa digunakan untuk kasus massa benda tetap. Jadi ketika menganalisis hubungan antara gaya dan gerak benda, di mana massa benda konstan, kita bisa menggunakan Hukum II Newton “yang sebenarnya”, tapi tidak menutup kemungkinan untuk menggunakan Hukum II Newton versi momentum. Ketika kita meninjau benda yang massa-nya tidak tetap /berubah, kita tidak bisa menggunakan Hukum II Newton “yang sebenarnya” (F = ma). Kita hanya bisa menggunakan Hukum II Newton versi momentum. Contohnya roket yang meluncur ke ruang angkasa. Massa roket akan berkurang ketika bahan bakarnya berkurang atau habis.

Hubungan antara Momentum dan Impuls

pukul tangan seorang temanmu menggunakan jari anda. Coba tanyakan kepada temanmu, mana yang lebih terasa sakit; ketika dipukul dengan cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat) atau ketika dipukul lebih lambat (waktu kontak antara jari pemukul dan tangan yang dipukul lebih lambat). Kalau dilakukan dengan benar (besar gaya sama), biasanya yang lebih sakit adalah ketika tanganmu dipukul dengan cepat. Ketika dirimu memukul tangan temanmu, tangan dirimu dan tangan temanmu saling bersentuhan, dalam hal ini saling bertumbukan.

Ketika terjadi tumbukan, gaya meningkat dari nol pada saat terjadi kontak dan menjadi nilai yang sangat besar dalam waktu yang sangat singkat. Setelah turun secara drastis menjadi nol kembali. Ini yang membuat tangan terasa lebih sakit ketika dipukul sangat cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat).

Hukum II Newton versi momentum yang telah kita turunkan di atas menyatakan bahwa laju perubahan momentum suatu benda sama dengan gaya total yang bekerja pada benda tersebut. Besar gaya yang bekerja pada benda yang bertumbukan dinyatakan dengan persamaan :

Impuls diartikan sebagai gaya yang bekerja pada benda dalam waktu yang sangat singkat. Konsep impuls membantu ketika meninjau gaya-gaya yang bekerja pada benda dalam selang waktu yang sangat singkat. Misalnya ketika ronaldinho menendang bola sepak, atau ketika tanganmu dipukul dengan cepat.

Penerapan Konsep Impuls dalam kehidupan sehari-hari

Pada penjelasan di atas sudah dijelaskan bahwa impuls merupakan gaya yang bekerja pada benda dalam waktu yang sangat singkat. Konsep ini sebenarnya sering kita alami dalam kehidupan sehari-hari. Ketika pada tubuh kita dikerjakan gaya impuls dalam waktu yang sangat singkat maka akan timbul rasa sakit. Semakin cepat gaya impuls bekerja, bagian tubuh kita yang dikenai gaya impuls dalam waktu sangat singkat tersebut akan terasa lebih sakit. Karenanya, penerapan konsep impuls ditujukan untuk memperlama selang waktu bekerjanya impuls, sehingga gaya impuls yang bekerja menjadi lebih kecil. Apabila selang waktu bekerjanya gaya impuls makin lama, maka rasa sakit menjadi berkurang, bahkan tidak dirasakan.

Beberapa contoh penerapan konsep impuls dalam kehidupan sehari-hari adalah sebagai berikut :

1. Sarung Tinju

Sarung tinju yang dipakai oleh para petinju itu berfungsi untuk memperlama bekerjanya gaya impuls. ketika petinju memukul lawannya, pukulannya tersebut memiliki waktu kontak yang lebih lama. Karena waktu kontak lebih lama, maka gaya impuls yang bekerja juga makin kecil. Makin kecil gaya impuls yang bekerja maka rasa sakit menjadi berkurang.

2. Palu alias pemukul

Mengapa palu tidak dibuat dari kayu saja, kok malah dipakai besi atau baja ? tujuannya supaya selang waktu kontak menjadi lebih singkat, sehingga gaya impuls yang dihasilkan lebih besar. Kalau gaya impulsnya besar maka paku, misalnya, akan tertanam lebih dalam

3. Matras

Matras sering dipakai ketika anda olahraga atau biasa dipakai para pejudo. Matras dimanfaatkan untuk memperlama selang waktu bekerjanya gaya impuls, sehingga tubuh kita tidak terasa sakit ketika dibanting. Bayangkanlah ketika anda dibanting atau berbenturan dengan lantai, hal itu disebabkan karena waktu kontak antara tubuhmu dan lantai sangat singkat. Tapi ketika dirimu dibanting di atas matras maka waktu kontaknya lebih lama, dengan demikian gaya impuls yang bekerja juga menjadi lebih kecil.

4. Helm

Kalau anda perhatikan bagian dalam helm, pasti anda akan melihat lapisan lunak. Kaya gabus atau spons, lapisan lunak tersebut bertujuan untuk memperlama waktu kontak seandainya kepala anda terbentur ke aspal ketika terjadi tabrakan. Jika tidak ada lapisan lunak tersebut, gaya impuls akan bekerja lebih cepat sehingga walaupun memakai helm, anda akan terasa sakit ketika terbentur aspal.

  • TUMBUKAN DAN JENISNYA

Dalam kehidupan sehari-hari, kita biasa menyaksikan benda-benda saling bertumbukan. Banyak kecelakaan yang terjadi di jalan raya sebagiannya disebabkan karena tabrakan (tumbukan) antara dua kendaraan, baik antara sepeda motor dengan sepeda motor, mobil dengan mobil maupun antara sepeda motor dengan mobil. Demikian juga dengan kereta api atau kendaraan lainnya. Hidup kita tidak terlepas dari adanya tumbukan. Ketika bola sepak ditendang David Beckham, pada saat itu juga terjadi tumbukan antara bola sepak dengan kaki Abang Beckham. Tampa tumbukan, permainan billiard tidak akan pernah ada. Demikian juga dengan permainan kelereng. Masih banyak contoh lainnya yang dapat anda temui dalam kehidupan sehari-hari.

Pada pembahasan mengenai momentum dan impuls, kita sudah meninjau hubungan antara momentum benda dengan peristiwa tumbukan. Hukum Kekekalan Momentum yang telah diulas sebelumnya juga selalu ditinjau ketika dua benda saling bertumbukan.

JENIS-JENIS TUMBUKAN:

Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).


Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.

1.TUMBUKAN LENTING SEMPURNA

Tumbukan lenting sempurna adalah Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.

Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.

Benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.

Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul.

persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.

Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.

Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2

v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan

v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum,

m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan

m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan

Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :

Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas.

persamaan Hukum Kekekalan Momentum :

persamaan Hukum Kekekalan Energi Kinetik :

Kita tulis kembali persamaan ini menjadi :

Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.

Koofisien elastisitas Tumbukan Lenting Sempurna

persamaan 3…

Kita tulis lagi persamaan 3 :

Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas / faktor kepegasan. Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :

e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan

TUMBUKAN LENTING SEBAGIAN

Pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik.

Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.

Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.

Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.

TUMBUKAN TIDAK LENTING SAMA SEKALI

suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu/saling menempel setelah tumbukan. Salah satu contoh dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah ini:

Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?

Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :

m1v1 + m2v2 = m1v’1 + m2v’2

m1v1 + m2(0) = (m1 + m2) v’

m1v1 = (m1 + m2) v’—- persamaan 1

Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru, yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum Kekekalan Momentum tidak berlaku setelah balok bergerak.

Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?

pada Hukum Kekekalan Energi Mekanik kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.

turunan persamaannya :

Catatan :

Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.

Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.

EM1 = EM2

EP1 + EK1 = EP2 + EK2

0 + EK1 = EP2 + 0

½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2

  • HUKUM KEKEKALAN MOMENTUM


pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung massa bola biliard selalu tetap, maka yang mengalami perubahan adalah kecepatan. Karena bola billiard yang disodok mengalami pengurangan kecepatan setelah tumbukan, maka tentu saja momentumnya juga berkurang. Jika momentum bola billiard yang disodok berkurang, kemanakah momentumnya pergi ? bisa kita tebak, momentum yang hilang pada bola billiard yang disodok berpindah ke bola billiard target. kok bisa? bola billiard target kan pada mulanya diam, sehingga momentumnya pasti nol. Setelah bertumbukkan, bola billiard tersebut bergerak. Karena bergerak, maka tentu saja bola billiard target memiliki momentum. Jadi momentum bola billiard yang disodok tadi berpindah ke bola billiard target. Dengan demikian kita bisa mengatakan bahwa perubahan momentum pada kedua bola billiard setelah terjadi tumbukan disebabkan karena adanya “perpindahan momentum” dari satu bola billiard ke bola biliard lainnya.

Pada saat sebelum tumbukan, bola billiard target diam sehingga momentumnya = 0, sedangkan bola billiard yang disodok bergerak dengan kecepatan tertentu; bola billiard yang disodok memiliki momentum. Setelah terjadi tumbukan, kecepatan bola billiard yang disodok berkurang; karenanya momentumnya juga berkurang. Sebaliknya, bola billiard target yang pada mulanya diam menjadi bergerak setelah terjadi tumbukan. Karena bergerak maka kita bisa mengatakan bahwa momentum bola billiard target bertambah”. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua bola billiard tersebut sebelum tumbukan = jumlah momentum kedua bola billiard setelah tumbukan


Alangkah baiknya jika dirimu melakukan percobaan menumbukkan dua bola (mirip bola billiard) di atas permukaan meja getar. Syukur kalau di laboratorium sekolah-mu ada meja getar. Pada percobaan menumbukan dua bola di atas permukaan meja getar, kita mengitung kecepatan kedua bola sebelum dan setelah tumbukan. Massa bola tetap, sehingga yang diselidiki adalah kecepatannya. Frekuensi getaran meja = frekuensi listrik PLN (50 Hertz). Karena telah diketahui frekuensi getaran meja, maka kita bisa menentukan periode getaran meja. Nah, waktunya sudah diketahui, sekarang tugas kita adalah mengukur panjang jejak bola ketika bergerak di atas meja getar. Karena meja bergetar setiap 0,02 detik (1/50), maka ketika bergerak di atas meja, bola pasti meninggalkan jejak di atas meja yang sudah kita lapisi dengan kertas karbon. Jarak antara satu jejak dengan jejak yang lain; yang ditinggalkan bola setiap 0,02 detik kita ukur. Setelah memperoleh data jarak tempuh bola, selanjutnya kita bisa menghitung kecepatan gerak kedua bola tersebut, baik sebelum tumbukan maupun setelah tumbukan. selanjutnya kita hitung momentum kedua bola sebelum tumbukan (p = mv) dan momentum kedua bola setelah tumbukan (p’ = mv’). Jika percobaan dilakukan dengan baik dan benar, maka kesimpulan yang kita peroleh adalah total momentum dua benda sebelum tumbukan = total momentum kedua benda tersebut setelah tumbukan.

Jika di laboratorium sekolah anda tidak ada meja getar, coba pahami ilustrasi bola biliard atau kelereng di atas secara saksama. Jika sudah paham, anda pasti setuju kalau gurumuda mengatakan bahwa jumlah momentum kedua benda sebelum tumbukan = jumlah momentum kedua benda setelah tumbukan. Pada ilustrasi di atas, sebelum tumbukan salah satu benda diam. Pada dasarnya sama saja bila dua benda sama-sama bergerak sebelum tumbukan. Kecepatan gerak kedua benda tersebut pasti berubah setelah tumbukan, sehingga momentum masing-masing benda juga mengalami perubahan. Kecuali jika massa dan kecepatan dua benda sama sebelum kedua benda tersebut saling bertumbukan. Biasanya total momentum kedua benda sebelum tumbukan = total momentum kedua benda setelah terjadi tumbukan.

Penjelasan panjang lebar dan bertele-tele di atas hanya mau mengantar dirimu untuk memahami inti pokok bahasan ini, yakni Hukum Kekekalan Momentum. Tidak peduli berapapun massa dan kecepatan benda yang saling bertumbukan, ternyata momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.

Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v’1 = kecepatan benda 1 setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum, maka :

m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v1 = momentum benda 1 setelah tumbukan, m2v2 = momentum benda 2 setelah tumbukan

Perlu anda ketahui bahwa Hukum Kekekalan Momentum ditemukan melalui percobaan pada pertengahan abad ke-17, sebelum eyang Newton merumuskan hukumnya tentang gerak (mengenai Hukum II Newton versi momentum telah saya jelaskan pada pokok bahasan Momentum, Tumbukan dan Impuls). Walaupun demikian, kita dapat menurunkan persamaan Hukum Kekekalan Momentum dari persamaan hukum II Newton. Yang kita tinjau ini khusus untuk kasus tumbukan satu dimensi, seperti yang dilustrasikan pada gambar di atas.

Kita tulis kembali persamaan hukum II Newton :

Ketika bola 1 dan bola 2 bertumbukan, bola 1 memberikan gaya pada bola 2 sebesar F21, di mana arah gaya tersebut ke kanan (perhatikan gambar di bawah)

Momentum bola 2 dinyatakan dengan persamaan :

Berdasarkan Hukum III Newton (Hukum aksi-reaksi), bola 2 memberikan gaya reaksi pada bola 1, di mana besar F12 = – F21. (besar gaya reaksi = gaya aksi. Tanda negatif menunjukan bahwa arah gaya reaksi berlawanan dengan arah gaya aksi)

Momentum bola 1 dinyatakan dengan persamaan :

Ini adalah persamaan Hukum Kekekalan Momentum. Hukum Kekekalan Momentum berlaku jika gaya total pada benda-benda yang bertumbukan = 0. Pada penjelasan di atas, gaya total pada dua benda yang bertumbukan adalah F12 + (-F21) = 0. Jika nilai gaya total dimasukan dalam persamaan momentum :

Hal ini menunjukkan bahwa apabila gaya total pada sistem = 0, maka momentum total tidak berubah. Yang dimaksudkan dengan sistem adalah benda-benda yang bertumbukan. Apabila pada sistem tersebut bekerja gaya luar (gaya-gaya yang diberikan oleh benda di luar sistem), sehingga gaya total tidak sama dengan nol, maka hukum kekekalan momentum tidak berlaku.

Dengan demikian, kita dapat menyimpulkan bahwa :

Jika tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan, maka jumlah momentum benda-benda

sebelum tumbukan sama dengan jumlah momentum benda-benda setelah tumbukan.

Ini adalah pernyataan hukum kekekalan momentum

Prinsip Kerja Roket

Dorongan roket dan jet merupakan penerapan yang menarik dari hukum III Newton dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II Newton, perubahan momentum selama suatu selang waktu tertentu = gaya total. Jadi bisa dikatakan bahwa terdapat gaya total pada gas yang disemburkan roket ke belakang. Gaya total tersebut merupakan gaya aksi yang diberikan oleh roket kepada gas, di mana arahnya ke bawah. Sebagai tanggapan, gas memberikan gaya reaksi kepada roket, di mana besar gaya reaksi = gaya aksi, hanya arahnya berlawanan. Gaya reaksi yang diberikan oleh gas tersebut yang mendorong roket ke atas.

Tidak ada komentar:

Posting Komentar